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S T A B I L I T Y  O F  C O U E T T E  F L O W  IN G R A N U L A R  M E D I A  

Yu. A. Berez in  and L. A.  Spodareva  UDC 532.526 

I n t r o d u c t i o n .  Granular media are those which consist of a large number of solid particles (granules) 
with gas- and/or liquid-filled interstices between them. These media attract interest because they are abundant 
in nature and technological processes (snow and rock avalanches, mudflows, transportation of loose materials, 
mining of raw mineral materials, chemical industry, and powder metallurgy). 

The fundamentals of modern knowledge of the mechanics of granular media are described in many 
papers (see, e.g., [1-3]). The first ideas were put forward by Bagnold in [1]. This paper contains the results of 
the first laboratory experiments and the estimations that describe the behavior of a moderately dense granular 
flow under shear. It is shown there that the pressure and the shear stress are proportional to the shear velocity 
squared if the angle of dynamic friction is not dependent on it. This quadratic dependence indicates that a 
granular medium behaves as a non-Newtonian fluid under certain conditions, whereas the stress and velocity 
of the shear are in linear relationship. 

Two flow types of dry granular materials are distinguished, depending on the material density and the 
shear velocity: 

(1) quasi-static flows which correspond to high densities and low velocities of the shear, in which the 
granules are always in close contact with each other, and the material behavior is fairly well described by the 
Mohr-Coulomb law; 

(2) "grain-inertia" flows which correspond to the lower densities and higher velocities of the shear, in 
which there are certain gaps between the granules, and their interaction is caused by continuous collisions with 
each other. It is usually assumed that the mean free path of granules is not larger than their characteristic 
size. The limiting case of such a flow with a large mean free path is sometimes called a translational regime. 

It is commonly known that  the grain-inertia regime of granular flows can be studied using the laws of 
conservation of mass, momentum,  and energy which are supplemented by some closing relations. Collisions 
between the granules are very important and, therefore, the energy of random motion of the granules should 
be taken into account, along with the energy of macroscopic motion. Similar to the gas, it can be called 
thermal energy, and the temperature can be introduced as a measure of intensity of the random motion of 
granules. Collisions are always inelastic in these media and, thus, the loss in energy of the granular material 
cannot be avoided in the energy balance. 

The closing equations relate the pressure, viscosity, heat conductivity, and the decrease in the energy of 
random motion to the density and temperature of the medium. Appropriate relationships derived by analogy 
with the kinetic gas theory are presented in [4-6]. The continuum equations with these additional relations 
were used to solve a number of problems, including the problems of the linear stability of granular media 
which are either motionless or moving under conditions of constant velocity shear [7-11]. Certainly, granular 
media differ from gases in many respects, for example, by the size of granules in comparison with the size 
of molecules, and by the absence of large-distance attraction forces. Because of this, complicated structures 
associated with the development of the kinetic theories mentioned above are hardly fully justified. Therefore, 
the phenomenological approach [12] based on an analysis of the dimensions of physical quantities in the closing 
relations seems to us rather attractive. We shall describe briefly the essence of this approach. 
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Pressure is the momentum variation per unit time per unit area. The momentum of a granule changes in 
each collision by approximately mvT, where VT is the root-mean-square (thermal) velocity of random motion 
of the granules. Multiplying this quantity by the mean collisional frequency VT/S Is is the mean free path of the 
granules (s << d)] and dividing it by the characteristic size d squared, we obtain p ~_ pv~.d/s (p is the density 
of the material to be examined). The dynamic viscosity coefficient is the density multiplied by the area and 
divided by time, i.e., # ~ pvTd2/,s. The order of magnitude of the heat conductivity related to the exchange 
process of the mean energy of random motion of the granules during their collisions is determined in the same 
way as the dynamic viscosity. We obtain the rate of decrease in the energy of random motion similarly. Using 
this model, Haft [12] solved a number of problems of the mechanics of granular media: "cooling" of a uniform 
medium, determination of a steady state arising when a decrease in the thermal energy because of inelastic 
collisions is compensated by energy supply from outside, steady Couette flow with and without regard for the 
gravity force. 

In the model proposed in [12], the granules are assumed to be absolutely rigid, and the time of their 
contact during collisions is assumed to infinitesimal. Hwang and Hutter generalized this model [13] with 
allowance for the compressibility of the medium and the deformation of granules during collisions, which 
leads to a finite time of contact of the granules. In other words, the model acquires the variable density 
p(d/(d + s)) 3 and the time of contact of the granules is t e =  ad/c, where c = (E/p) 1/2 (E is the Young's 
elasticity modulus) and a is a nondimensional parameter of the order of unity. This contact time is the 
time necessary for a plane deformation wave to cross the granule's diameter back and forth. The total time 
between the collisions is then determined as te = t I + tc (t i  = S/VT is the mean free time of the granules), 
and the pressure, transfer coefficients, and loss of thermal energy are obtained in [13] by substituting te for 
t I in appropriate quantities from [12]. It is shown that the account of the finite contact time slows down the 
relaxation processes. 

In the present work, we study the dispersion properties of a granular medium described by this model 
[13]. 

1. G o v e r n i n g  E q u a t i o n s .  With a granular medium considered as a continuum, we write the equations 
for the density, macroscopic velocity, and energy of random motion or temperature of the granules: 

dp Oui dui OPij 3 dT O [ae OT ~ Oui 
= - P ' P d t = - o ' 2 p d t - o k / - & j - I ( 1 . 1 )  

The stress tensor has the form 

where d/dt = O/Ot + uiO/Oxi, u = (u ,v ,w)  is the macroscopic velocity, p is the pressure, T = v~- is the 
temperature of the granules, ( is the coefficient of bulk (second) viscosity, ee is the heat conductivity, and I is 
the loss of thermal energy in inelastic collisions of the granules per unit volume per unit time. As elsewhere, 
the twice repeated subscripts denote summation. 

Equations (1.1) should be supplemented by closing equations which relate the pressure, transfer 
coefficients, and loss of thermal energy to the density, temperature, and, possibly, some other functions which 
characterize the state of the medium. Precisely the closing equations specify the model to be used for studying 
the processes in granular media. 

As mentioned in the Introduction, we use phenomenological relationships for the pressure, viscosity 
and diffusion coefficients, and rate of decrease in the thermal energy of the granules, which are based on a 
dimensional analysis of the physical quantities in the governing equations. If we assume, as in [13], that the 
density depends on the mean free path and the contact time of the granules during their collisions is finite, 
the desired formulas, with accuracy to nondimensional coefficients of the order of unity, have the form 

p = m ( d + s )  -3, p = m v T ( d + s ) - 2 t ~  -1, 

#,r = re(d+ ,s)-lte 1, I = m(1 -- e2)v~.(d+ s)-3te  ]. (1.3) 
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Here m = ppd 3, le = t f  + to, t f  = 8 /VT,  tc = od/c, and e is the coefficient of restitution after inelastic 
collisions of the granules. For absolutely rigid granules (E,c --* ~ ) ,  formulas (1.3) are transformed to the 
formulas from [12]. Thus, the pressure, momentum and heat-transfer coefficients, and decrease in the energy 
of random motion of the granules are functions of the mean free path and temperature ,  and the physical 
properties of the substance enter these characteristics in terms of the Young's modulus and the coefficient of 
restitution. The functions p, #, ~, ~e, and I decrease with increasing mean free path, whereas their dependence 
on temperature is more complicated. 

2. F o r m u l a t i o n  o f  t h e  P r o b l e m  of  t h e  D i s p e r s i o n  P r o p e r t i e s  o f  a M e d i u m .  As in the usual 
procedure, for analysis of the dispersion properties of any medium, the governing equations are linearized 
with respect to a certain equilibrium state disturbed by small perturbations in the desired functions. If the 
solution of this linearized system for perturbations is represented as a superposition of plane waves, the 
existence condition of a nontrivial solution leads to the dispersion equation w = w(k) which determines the 
frequency of plane waves versus their wavenumber. An analysis of the roots of this equation allows us to draw 
a conclusion on the stability or instability of the initial equilibrium state. If the frequency is complex for real 
wavenumbers, then exp i ( k r -  tot) = exp ( Imwt)exp i ( k r -  Rewt), and we easily see that  the positive sign of 
Imw = "7 denotes an increase in the perturbation amplitude, while a negative sign denotes a decrease in the 
amplitude. The equilibrium state of the medium is unstable in the first case and stable in the latter case. 

Collisions between the granules are inelastic, and, therefore, a state that  corresponds to a 
macroscopically motionless medium is not an equilibrium state. Indeed, in the simplest case of a uniform 
medium the third equation in (1.1) reduces to the equation dT/dt = -2I /3p .  Since I is positive, the 
temperature decreases in time, asymptotically approaching zero, and all transfer coefficients also tend to 
zero. Hence, a nontrivial situation is possible only if there is mechanism of compensation for the energy of 
random motion of the granules. This arises, in particular, in shear (Couette) flows where the dissipation of 
the thermal energy of the granules is compensated by the work of external forces which ensure the existence 
of a shear flow. 

We consider a granular-medium flow with constant shear between two plates moving parallel to each 
other with different velocities. In the steady state, the macroscopic velocity has one component depending on 
the coordinate y, i.e., u0 = (uo(y), 0, 0). The continuity equation and the z component of the motion equation 
are satisfied identically, and the x and y components of the motion equation and the temperature  equation 
yield 

dpo = 0 ,  d [" duo'~ d (aeodTo~ [du~ 2 Io. (2.1) 

The simplest solution of Eqs. (2.1) corresponding to a flow with constant shear is 

duo = F = const, p0 = mvT(d + s0)-2t~ "1, #0, r ae0 = m(d + so)-lt'[ 1, P0 = const, dy 
(2.2) 

v~- = To = (1 - e2)- i (d  + s0)2F 2, I0 = m(1 - e2)v~(d + so)-St~-l. 

Here the shear F is a constant quantity. Since p = re(d+ so) -3, the uniform density denotes a constant mean 
free path. 

We disturb the steady state (2.2) of the medium by adding small perturbations to all functions, i.e., we 
set f ( r ,  t) = f0 + f ' ( r ,  t) and f '  << f0, substitute these relations into Eqs. (1.1)-(1.3), and retain all first-order 
quantities. Henceforth, the primes are omitted. The coefficient u0 in the resultant system is a function of 
the y coordinate, which complicates the analysis. Therefore, we shall consider perturbations that propagate 
perpendicular to the shear plane z,y .  In other words, we confine ourselves to perturbations with the wave 
vector k = (0, 0, k), representing them in the form ~ Ak exp i(kz -w t ) .  Since Of/Oz = 0 and Of/Oy = 0, this 
system of linear equations reduces to two subsystems, one of which contains the functions u and v, and the 
other has the functions p, w, and T: 

po(ut + Fv) = pOUzz, port = ~ovzz; (2.3) 
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Pt = -powz,  powt = -pz  + (Co + 4#o/3)Wzz, (3/2)poTt = 32oTzz - p o w z  + F2p - I. (2.4) 

We seek a solution in the form of plane waves, and, thus, assume that O/cOt = - i w  and c3/coz = ik in Eqs. 
(2.3) and (2.4). 

From system (2.3), we obtain v = 0 and w = - i (#o/po)k  2, which corresponds to a decaying 
nonpropagating harmonic with the decrement 7 = -#ok2/po,  which has only the velocity component u 
parallel to the steady flow velocity. 

System (2.4) describes longitudinal waves (relative to the wave vector of perturbations), in which the 
density, velocity component along the wave vector, and temperature vary. The continuity equation leads to 
the following relationship between the velocity and density (or mean free path) of perturbations: p = kpow/w 
and w = -3ws (d  + so) -1 k -a. The pressure, transfer coefficients, and rate of decrease in the energy of random 
motion of the granules (1.3) are functions of the mean free path and temperature,  and we, therefore, write 
perturbations in the form 

O(p, #, I) CO(P, U, I) 
p , # , I  = (p l , l t l , I1)s+(p2,#2,12)T,  p1,#1,I1 - Os ' p2,#2, I2 - COT 

Substituting these relations into (2.4) and equating the determinant to zero, we obtain the cubic equation 

73 + (ak 2 - b)72 + k2(Cl k2 - dl)'y - k2(elk 2 + f l )  = 0, (2.5) 

where 

7 = --iw, a = (213po)(3povo + zeo), vo = (4#o/3-4- r cl = 2eeovol3po, 

b = (2/3po)(#2F 2 - I2), dl = (2/3po)(pl(d + s o ) / 2 -  pop2/po + 3povob), (2.6) 

el = 2a~opl(d + so)/9p 2, fl  = 2(d + s o ) ( p 2 ( # l F  2 - 11) - p,( ; t2r  2 - I2))/9p~; 

Pl = -re(d-4- 3so + 2VTtc)(d + so) -3, P2 = m(t  I + tc/2)vTlt'~2(d + so) -2, 

I.tl = - m ( d  + 2s0 + V T t c ) v ~ ' l i e 2 ( d  + 80) :2 ,  /22 = (1/2)msov:r3t-~2(d + s0) -1 ,  
(2.7) 

11 = - rn(1  - e2)vT(d + 4s0 + 3VTtc)(d + s0)-4t~ -2, 

/2 = (1/2)m(1 -- e2)(3tl + 2tc)(d + s0)-at /2.  

The real parts of the roots 3' in the dispersion equation (2.5) correspond to the growth rate (3" > 0) or 
decrement (3' < 0) of the perturbation amplitude in time, whereas the imaginary parts correspond to the 
perturbation frequency. The solution of this equation allows us to find the regions of stability or instability of 
the granular flow considered, depending on the parameters of the medium and the perturbation wavelengths 
or wavenumbers. 

3. Ana ly s i s  o f  t h e  So lu t ions  of  t h e  D i spe r s i on  E q u a t i o n .  Since the problem of the stability of 
a granular flow is considered within the framework of continuum mechanics, the minimum wavelength of the 
perturbations examined should be substantially larger than the granule diameter or, more exactly, than the 
characteristic size equal to the sum of the granule's diameter and the mean free path. Thus, ,Xmi n = A(d+ so) 
(A >> 1), and the maximum wavenumber that fits the limits of applicability of the continuum model is 
k m a x  = 2 r A - l ( d  + so) - i .  

Since the dispersion equation is a cubic one, it has three roots for three harmonics that can exist 
in the medium considered. First of all, we shall study the behavior of long-wave perturbations with small 
wavenumbers (k << 1) for which an analytical solution can be obtained. For doing so, we present the growth 
rate in the form 3' = 3'0 + k3'1 + k272 + . . . .  Confining ourselves to second-order quantities inclusive and 
substituting the expansions for "y into the dispersion equation (2.6), we collect separately the terms of zeroth, 

first, and second orders. In the zeroth order, we have 3'3 _ b%2 = 0 from which it follows that  3'~1) = b and 

../~2,3) ----- 0, where the superscripts denote the perturbation-harmonic number. In the first order with respect 

to the wavenumber, we have 70"ya('Y0 - 2b/3) = 0. Substituting .y~l), we find 3,11) = 0, and to find the two 
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remaining r o o t s  3'I 2'3), we use the second approximation. In the second order with respect to the wavenumber, 
we obtain the equation 

33'0(3'12 + 3'03'2) + a3'02 - b(3'12 + 23'03'1) - d13'0 - f l  = O. 

Substi tuting 7o(2'3) = 0 and 3"~D = b into it, we obtain 

= 3' 1) = f l  -ab )/b 2 

Coming back to notat ion (2.6) and (2.7), we write the roots of the dispersion equation in the long-wave range. 
For the first harmonic,  we write 

7 (1) = -2 (1  - e2)/3te + O(k3), (3.1) 

from which it follows that  the first harmonic is nonpropagating (w = 0) and decaying (3' < 0). If the mean 
collision t ime of contact of the granules tc is much smaller than the mean free t ime t f,  the decrement modulus 
increases with decreasing coefficient of resti tution as (1 - e2) 1/2, and the decrement  of the first harmonic is 
directly proportional to the thermal  velocity of motion of the granules and inversely proport ional  to the mean 
free path. 

For the second and third harmonics, we obtain 

7 (5,3) = +ik(d + so)'/2(d + so + VTtc)'/2/(x/3te) + O(k2). 

It follows from this formula that  the growth rates of the second and third harmonics in the long-wave range are 
purely imaginary. Since 3' = - i w  by definition, the frequencies are real, and these harmonics are nondecaying 
plane waves propagating in the opposite directions with phase velocity 

Yph = w(2,a)/k = 3-1/2vT(d + s0)Sol(1 + t c / t l ) - l (1  + sotc/t I (d + s0)) 1/2. 

The ratio tc/t I being given, the phase velocity increases with increasing thermal velocity of the granules and 
decreases with a decrease in the coefficient of restitution as Vph "~ (1 - e 2 )  -1/2, since VT = (1 -e2)- l /Z(d+so)F.  

Thus, the Couette  granular flow examined is neutrally stable with respect to long-wave perturbations 
which propagate perpendicular to the shear plane. 

To s tudy the stability of a granular flow within the entire range of wavenumber variation (0 ~< k ~< 
kmax), we found the roots of Eq. (2.6) using the Cardano formulas for various parameters of the medium. 
Figure 1 shows the decrements and frequencies of nonpropagating and propagating harmonics as functions 
of wavenumber for the mean free path so = 0.05d, e = 0.9, and tc = 0. The first harmonic decays most 
rapidly in the long-wave range kd < 0.05. As the wavenumber increases, the decrement modulus decreases 
and reaches a min imum with kd ~ 0.17 (~ = 37d). A further increase in the wavenumber leads to a nearly 
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linear increase in the decrement  modulus by approximately 1.5 times (for kmax) compared with its minimum 
value. The frequency of propagating harmonics for 0 ~< kd <~ 0.06 (A/> 100d) increases linearly with increasing 
wavenumber, and the phase velocity in this long-wave region is not dependent  on the wavenumber,  i.e., the 
waves do not possess dispersion. For kd > 0.06, the function w(2,3) = w(k) is not linear, which corresponds to 
positive dispersion for which the phase velocity increases with increasing wavenumbers.  This means that  the 
shorter waves propagate faster than the longer ones. In accordance with the general theory of dispersion waves, 
finite-amplitude rarefaction waves can exist in this region. The frequency grows with subsequent increase in 
the wavenumbers, but  the increase in the velocity of propagating harmonics becomes slower, and the phase 
velocity is almost constant,  approximately 1.7 times larger than for k ---* 0, in the region 0.2 ~< kd <~ 0.35. 

The propagating harmonics decay in time, their decrement modulus, which is very small in the long- 
wave range, increases monotonically up to the limit km~x, and the wave-attenuation coefficient e = "7/w 
increases linearly as the wavenumbers vary from kd >t 0 to kd ~ 0.06 and reaches a local max imum (e = 0.69) 
at kd .~ 0.09. As the wavenumber increases, the at tenuat ion coefficient passes through a min imum (~min ~" 
0.53) at kd ~ 0.18 and then monotonically increases up to 0.83 at kd = (kd)max = 0.45. The phase velocity 
and the at tenuation coefficient of propagating harmonics are shown in Fig. 2 as functions of the wavenumber. 

Taking into account the finite contact t ime tc does not vary qualitatively the character of perturbation 
evolution. Figure 3 plots 3 ,(D, ~,(2,3), a n d  w (2'3) versus the wavenumber for tc = t / .  We see that  the decrement 
modulus of the first harmonic in the long-wave range is twice as small as in the case of absolutely rigid 
collisions (tc = 0). The  same decrease is observed for the decrement and frequency of the propagating modes. 

An increase of the mean free path so for tc = 0 is qualitatively similar to an increase in the degree of 
deformation of the granules in collisions: the decrements, frequencies, and phase velocities of the harmonics 
decrease. For so = 0.5d and tr = O, the phase velocity Vph, thus, varies from 0.6 as k ---, 0 to ~ 1.1 in the 
medium range of wavenumbers (0.15 ~< kd <~ 0.30), and then decreases to 0.95 for k = kmax. 

Thus, a granular constant-shear flow described by the model proposed in [13] is stable relative to small 
perturbations within the entire range of wavelengths of the waves propagating across the shear plane. 
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